

Reasoning about quantitative data

Rhetorical argument and data visualization

Richard Layton

Session F4A: Special Session - Is MIDFIELD for me?
2021 FIE Conference
Wednesday, Oct. 15, 2021

Reasoning about data—and visualization—are iterative processes.

version Design of effective displays is iterative attracted

Complex displays start with simple conceptual sketches

Iteratively exploring students in 5 engineering disciplines

Initially we sketched and discussed around a white board.

2017-05-30

In our first attempt we asked where grads in a major started

version]

Same graph, 5 majors

The visual story didn't seem meaningful

version]

We constructed a new metric

A new metric, migration yield, was hinted at in our initial brainstorming.

Consider Black male students

Pool (839)

Black Male students 839 potential migrators to EE

Of those, 386 migrated to EE Fraction of migrators attracted = 386 / 839 = 0.460

Migrate (386)

Of those, 184 graduated in EE
Fraction attracted that graduate = 184 / 386 = 0.477

Graduate (184)

Migration yield is computed in one of two ways:

Product of the two fractions: $0.460 \times 0.477 = 22\%$

Ratio of graduates to pool: 184 / 839 = 22%

Same graph, 5 majors

We realized we had two distinct concepts contributing to migration yield Pool (839) The fraction of the pool who were attracted Migrate (386) X The fraction of those Graduate (184) who graduated = migration yield

In a Cartesian graph, a constant product is a contour

version 3

version 3

lines of constant migration yield

Female

Male

two legends required

A: Asian

B: Black

H: Hispanic

W: White

