
Creating more effective charts 2024 MIDFIELD Institute

Perception, reasoning, and credibility

§ Effective alternatives to pie charts

Judging pie slices is a low-accuracy task

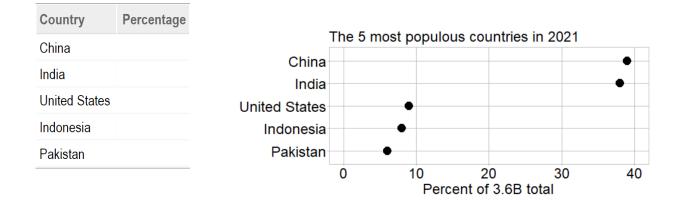
Richard Layton resides online at

- https://www.graphdoctor.com
- https://github.com/graphdr

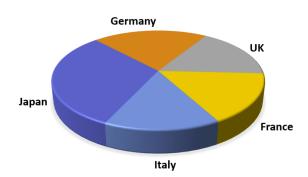
Creating More Effective Graphs by Naomi Robbins (2013) inspired the session title and Chapter 2, "Limitations of some common graphs," inspired our exercises.

- Visually estimate each country's percentage
- Fill-in the blanks in the table
- Total should be 100%

Country	Percentage
China	
India	
United States	
Indonesia	
Pakistan	

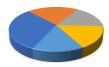

Data source: World Bank (2022)

Judging values along a common axis is a high-accuracy task

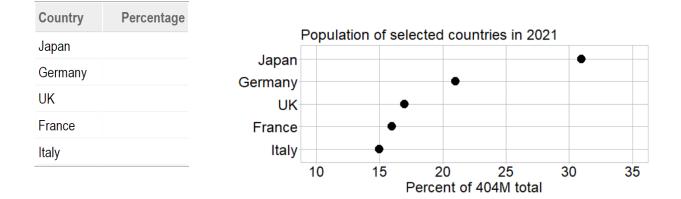

- The new chart displays the same data
- *Visually estimate* the percentages using the new chart
- Fill-in the blanks in the table

The data from the pie chart is shown below as dots along a common scale.

3D effects distort our judgment even further

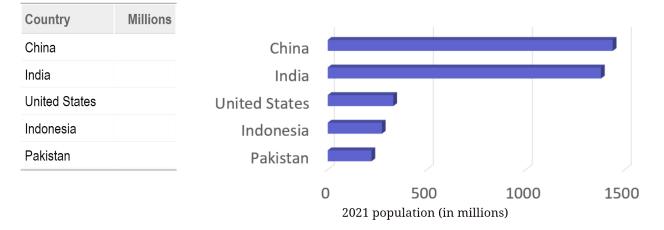

- Visually estimate each country's percentage
- Fill-in the blanks in the table
- Total should be 100%

Country	Percentage
Japan	
Germany	
UK	
France	
Italy	


Data source: World Bank (2022)

Again, a common scale improves our visual judgments

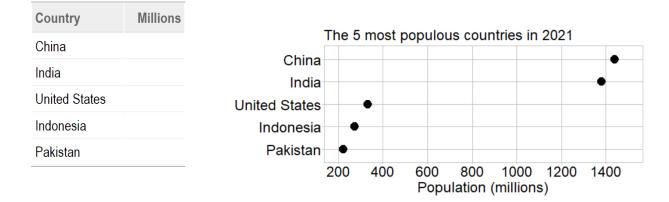
- The new chart displays the same data
- *Visually estimate* the percentages using the new chart
- Fill-in the blanks in the table


The data from the pie chart is shown below as dots along a common scale.

§ Effective alternatives to bar charts

3D effects always distort our judgment

- Visually estimate each country's population in millions
- Fill-in the blanks in the table

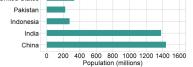

Data source: World Bank (2022)

Same data—without 3D effects—along a common scale

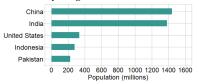
- The new chart displays the same data
- Visually estimate the percentages using the new chart
- Fill-in the blanks in the table

The data from the 3D bar chart is shown below as dots along a common scale.

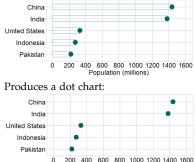
With a zero baseline and no 3D effects, bars are OK


- Zero baseline avoids deception
- Ordered by data values
- Only the endpoint encodes information

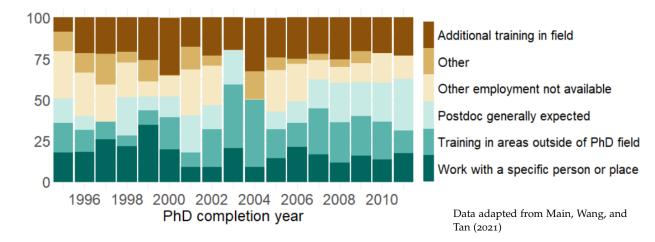
Consider dot charts for


- Visually comparing quantities
- Replacing most pie and bar charts

Notes


Default bar chart:

Ordered by magnitude:

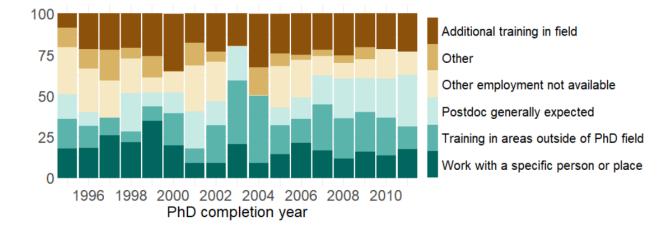

Omitting the fill color:

200 400 600 800 1000 1200 1400 1600 Population (millions)

§ Aligning the design to the story

Visual grammar: charts encode information

Survey: "What was your reason for taking this postdoc?"

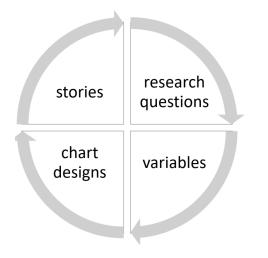

What information is encoded?

Before discussing what the chart *means*, we first have to agree on what the information *is*.

- Select one color.
- What information does the color encode?
- Write your thoughts below.

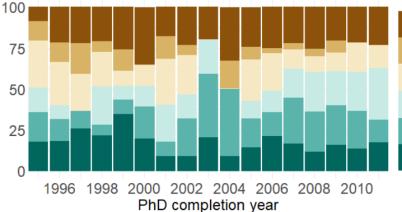
Visual rhetoric: charts convey meaning

Survey: "What was your reason for taking this postdoc?"



What story do these data tell?

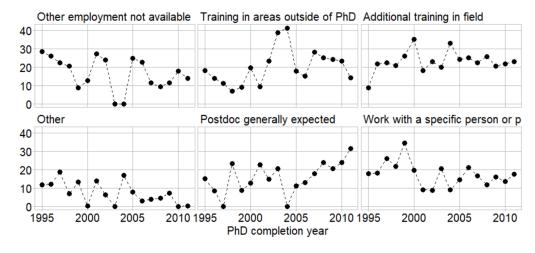
We agree on what the information *is;* now we consider what it *means*.


- *Meaning*. Describe a story (if any) this chart conveys *to you*.
- Write your thoughts below.

Visual grammar and rhetoric depend on the variables

- What is your question?
- What variables are measured?
- How are the variables classified?
- What chart designs suit these variables?
- What stories do the charts convey?
- How do the stories refine your questions?
- What new variables are needed?
- Repeat

What can we say about these variables?

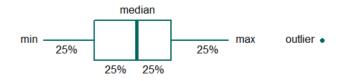

Additional training in field
Other
Other employment not available
Postdoc generally expected
Training in areas outside of PhD field
Work with a specific person or place

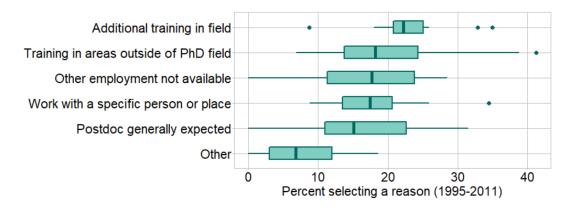
FILL IN THE BLANKS to begin summarizing the data structure.

- 1. _____PhD completion year_____ is a *categorical* variable.
- 2. _____ is a *categorical* variable
- 3. ______ is the *quantitative* variable
- 4. _______ is the *independent* variable

Note that discrete time units are not 'continuous', so the time units here are an ordered, categorical (not quantita-tive) variable.

Time series? Use a line chart.

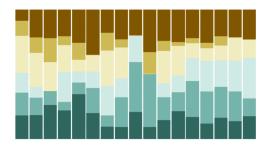



Un-clutter the display using one panel per reason.

- *Meaning*. Describe a story (if any) this chart conveys to you.
- Write your thoughts below.

An unstated assumption underlies the visual muddle

- Emphasizing the trivial
- A distributed quantity is displayed in a box-and-whisker plot.



Distributions? Use a box-and-whisker plot.

- *Meaning*. Describe a story (if any) this chart conveys *to you*.
- Write your thoughts below.

Reflect on perception, reasoning, and credibility

Select any prompt. Compare the stacked bar design to the box-and-whisker chart. Outline your response:

• Compare designs: Quantitative data are *perceived* accurately.

• Compare designs: *Reasoning* about the data is supported effectively.

• Compare designs: An argument is given *credible* visual support.

§ Advice from experts

Match the expert to the advice.

FILL IN THE BLANKS with letters A–D.

Expert	Letter	Emphasizes the importance of
A. Alberto Cairo		message
B. Jean-luc Doumont		variables
C. Stephanie Evergreen		revealing the complex
1 0		
D. Edward Tufte		knowing your main point
		not loin a to second l
		not lying to yourself

Ideas to consider

- Characterize the data structure and content
- Explore a story's context, causality, and complexity
- Align visual and verbal logic by revising iteratively
- Edit to suit the rhetorical goals for each audience
- Control every pixel—avoid thoughtless conformity
- Question are you seeing only what you want to believe?

References

Alberto Cairo. How Charts Lie. W.W. Norton, New York, 2019.

- Jean-luc Doumont. *Trees, Maps, and Theorems*. Principiae, Belgium, 2009.
- Stephanie D. H. Evergreen. *Effective Data Visualization*. Sage, Thousand Oaks, CA, 2017.
- Joyce B. Main, Yanbing Wang, and Li Tan. The career outlook of engineering PhDs. *Journal of Engineering Education*, 110(4):977–1002, 2021. URL https://doi.org/10.1002/jee.20416.
- Naomi Robbins. *Creating More Effective Graphs*. Chart House, Wayne, NJ, 2013.
- Edward Tufte. *The Visual Display of Quantitative Information*. Graphics Press, Cheshire, CT, 1983.
- World Bank. Population total for United States, 2022-01. URL https: //fred.stlouisfed.org/series/POPTOTUSA647NWDB.