
Expanding your graphical repertoire 2024 MIDFIELD Institute

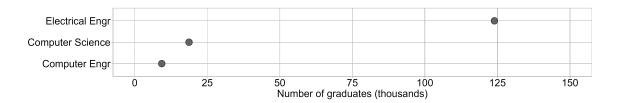
Variables, design, message

Richard Layton resides online at

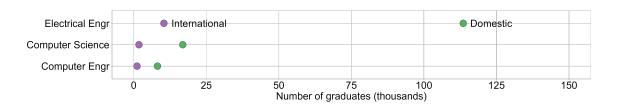
- https://www.graphdoctor.com
- https://github.com/graphdr

Trees, Maps, and Theorems by Jean-luc Doumont (2009) inspired the four main topics.

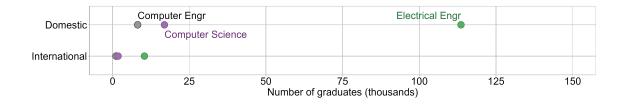
§ Comparing data

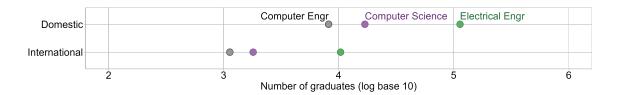

[4] Data

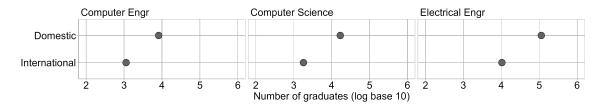
Square brackets [i] give the slide num-

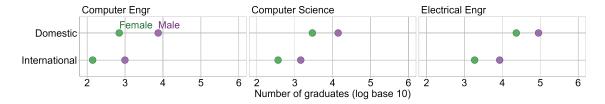

Representation at graduation in 3 engineering programs, 19 US institutions, 1987-2018

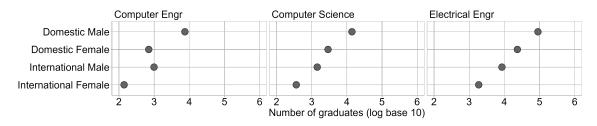
	origin	sex	Electrical Engr	Computer Engr	Computer Scien	се
	<char></char>	<char></char>	<int></int>	<int></int>	<in< td=""><td>ıt></td></in<>	ıt>
1:	${\tt International}$	${\tt Female}$	1865	140	3	65
2:	${\tt International}$	Male	8530	993	14	42
3:	Domestic	Female	23426	702	29	23
4:	Domestic	Male	90150	7481	139	87


[5] Dot chart

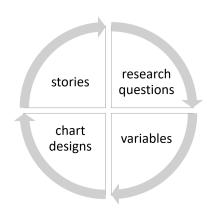

[6] Add a second category


[7] Exchange mapping of categorical variables


[8] Logarithmic scale for orders of magnitude differences


[9] One program per facet

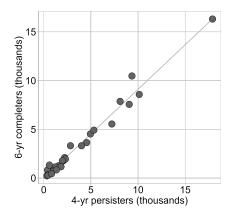
[10] Add a third category



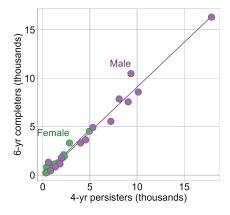
[11] Combine categories

[12] Discussion: Comparing data

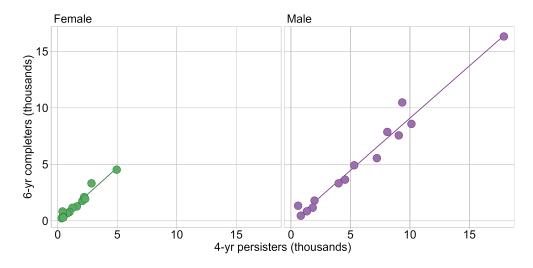
What points seem most important to you so far?

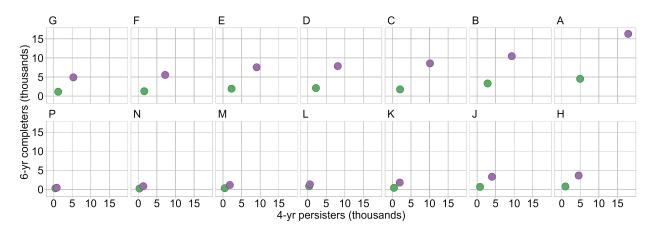

§ Revealing correlations

[14] Data

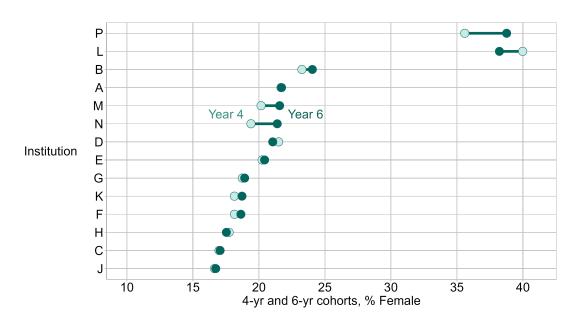

Engineering students at 14 institutions persisting to year 4 and graduating by year 6, 1987-2019

	${\tt institution}$	sex	у4	у6
	<char></char>	<char></char>	<int></int>	<int></int>
1:	A	${\tt Female}$	4953	4525
2:	A	Male	17897	16312
3:	В	Female	2834	3316
26:	N	Male	1338	838
27:	P	Female	457	283
28:	P	Male	827	447

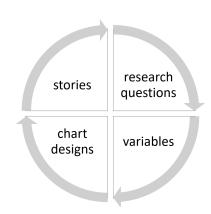

[15] Scatterplots are designed to reveal correlation


[16] Add a category

[17] One facet per sex



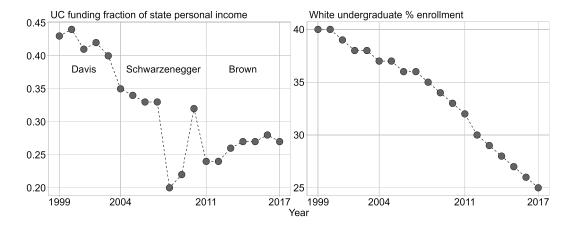
[18] One facet per institution


[19] Change the quantitative variable

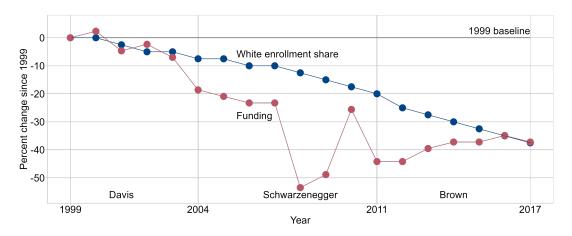
Engineering students at 14 institutions persisting to year 4 and graduating by year 6, 1987–2019

[20] Discussion: Revealing correlations

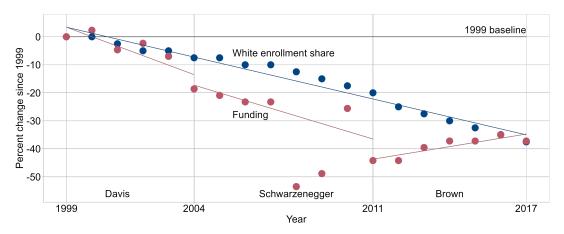
- We saw a correlation.
- We changed the emphasis.
- Which chart tells a more compelling story?

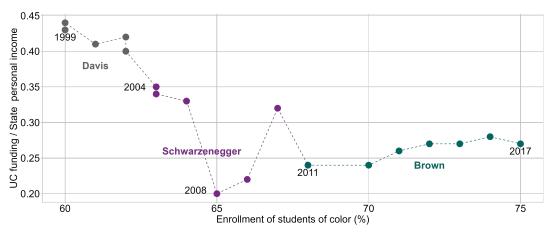

§ Showing evolution

[22] Data


University of California: funding and percent White enrollment, 1999-2017

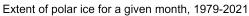
	Year	${\tt Governor}$	Pct_UG_White	Funding_metric
	<num></num>	<char></char>	<num></num>	<num></num>
1:	1999	Davis	40	0.43
2:	2000	Davis	40	0.44
3:	2001	Davis	39	0.41
17:	2015	Brown	27	0.27
18:	2016	Brown	26	0.28
19:	2017	Brown	25	0.27

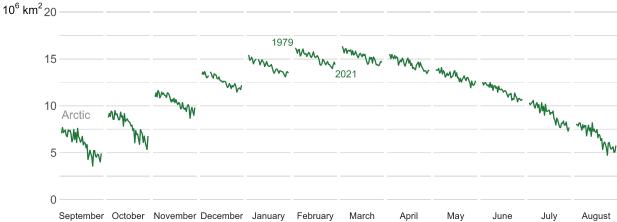

[23] Two time series


[24] Indexed time series

[25] Parallel lines indicate possible correlation

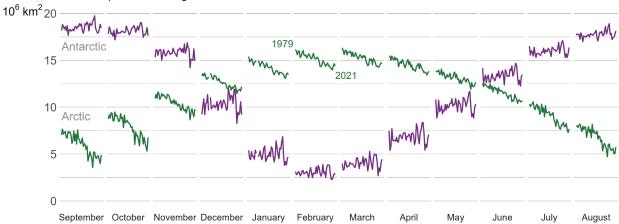
[26] Connected scatterplot

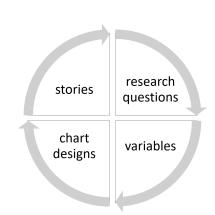



[27] Data

Extent of polar ice (millions sq km) 1979–2021

	hemis	month	year	extent
	<char></char>	<fctr></fctr>	<int></int>	<num></num>
1:	Arctic	${\tt September}$	1979	7.051
2:	Arctic	${\tt September}$	1980	7.667
3:	Arctic	September	1981	7.138
1030:	Antarctic	August	2019	17.478
1031:	Antarctic	August	2020	17.758
1032:	Antarctic	August	2021	18.131

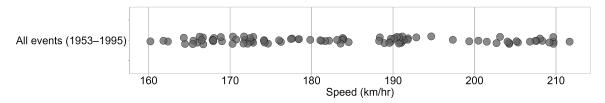

[28] Cyclic time series


[29] Add a category

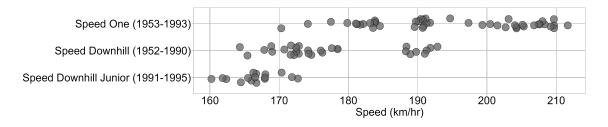
Extent of polar ice for a given month, 1979-2021

[30] Discussion: Showing evolution

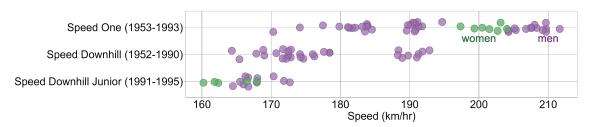
- Which time series chart design might be used in your own work?
- Explain.


§ Displaying distributions

[32] Data

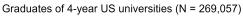

World speed skiing (km/hr) competitions 1953–1995

Key: <Event, Year, Sex> Event Year Sex Speed <fctr> <int> <fctr> <num> 1: Speed Downhill 1952 Male 167.85 2: Speed Downhill 1953 Male 168.86 3: Speed Downhill 1961 Male 165.42 4: Speed Downhill 1962 Male 172.85 88: Speed One 1990 Female 199.35 89: Speed One 1991 Male 207.59 90: Male 208.33 Speed One 1993 Male 170.30 91: Speed One 1993


[33] Strip chart

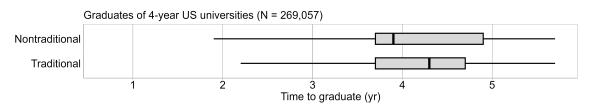
[34] Add a category

[35] Add a second category


[36] Data

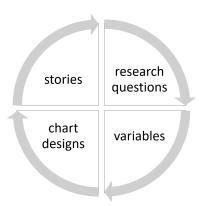

MIDFIELD graduates (N = 270k), enrolled in Engineering, excluding 10th and 90th quantiles

Key: <path, sex>


	path	sex	<pre>years_to_grad</pre>
	<char></char>	<char></char>	<num></num>
1:	${\tt Nontraditional}$	${\tt Female}$	3.9
2:	${\tt Nontraditional}$	Female	1.9
3:	${\tt Nontraditional}$	Female	3.9
4:	${\tt Nontraditional}$	Female	5.3
269054:	Traditional	Male	1.3
269055:	Traditional	Male	3.0
269056:	Traditional	Male	5.3
269057:	Traditional	Male	0.7

[37] Box and whisker chart

[38] Add a category


[39] Combine a second category

[40] Discussion: Displaying distributions

What MIDFIELD distributions would you like to see:

- what quantitative variable?
- what categorical variables?

§ Closing discussion

[42] Variables, design, message

• For you, what was the muddiest point in the session?

• Is there a graph design you would have liked to have seen today?

• Is there a class of variables you would have liked to have seen today?

References

- Jean-luc Doumont. Trees, Maps, and Theorems. Principiae, Belgium,
- F. Fetterer, K. Knowles, W.N. Meier, M. Savoie, and A.K. Windnagel. Sea ice index, version 3, Sea ice extent and area organized by year. 2017. DOI: https://doi.org/10.7265/N5K072F8. URL https: //nsidc.org/arcticseaicenews/sea-ice-tools/.
- Christopher Newfield. Budget justice: Addressing the structural racism of higher education funding. Academe, 107(2):57-64, 2021. URL https://www.aaup.org/article/budget-justice.
- Antony Unwin. GDAdata: Datasets for the Book Graphical Data Analysis with R, 2015. URL https://CRAN.R-project.org/package= GDAdata. R package version 0.93.