Creating more effective charts 2023 MIDFIELD Institute

Perception, reasoning, and credibility

§ Effective alternatives to pie charts Judging pie slices is a low-accuracy task

- Richard Layton resides online at
- https://www.graphdoctor.com
- https://github.com/graphdr

Creating More Effective Graphs by Naomi Robbins (2013) inspired the session title and Chapter 2, "Limitations of some common graphs," inspired our exercises.

- Visually estimate each country's percentage
- Fill-in the blanks in the table
- Total should be 100%

Country		Percentage
China		
India		
United States		
Indonesia		
Pakistan	Data source:	World Bank (2022)

Judging values along a common axis is a high-accuracy task

- The new chart displays the same data
- Visually estimate the percentages using the new chart
- Fill-in the blanks in the table

The data from the pie chart is shown below as dots along a common scale.

Country	Percentage
China	
India	
United States	
Indonesia	
Pakistan	

3D effects distort our judgment even further

- Visually estimate each country's percentage
- Fill-in the blanks in the table
- Total should be 100%

Country	Percentage
Japan	
Germany	
UK	
France	
Italy	

Data source: World Bank (2022)

Again, a common scale improves our visual judgments

- The new chart displays the same data
- Visually estimate the percentages using the new chart
- Fill-in the blanks in the table

The data from the pie chart is shown below as dots along a common scale.

Country	Percentage
Japan	
Germany	
UK	
France	
Italy	

§ Effective alternatives to bar charts

3D effects always distort our judgment

- Visually estimate each country's population in millions
- Fill-in the blanks in the table

Country	Millions					
China		China				
India		India				
United States		United States				
Indonesia		Indonesia				
Pakistan		Pakistan				
			0	500	1000	1500
			202	1 population (in n	nillions)	

Data source: World Bank (2022)

Same data—without 3D effects—along a common scale

- The new chart displays the same data
- Visually estimate the percentages using the new chart
- Fill-in the blanks in the table

	_

The data from the 3D bar chart is shown below as dots along a common scale.

Country	Millions
China	
India	
United States	
Indonesia	
Pakistan	

With a zero baseline and no 3D effects, bars are OK

- Zero baseline avoids deception
- Ordered by data values
- Only the endpoint encodes information

Consider dot charts for

- Visually comparing quantities
- Replacing most pie and bar charts

Notes

§ Aligning the design to the story

Visual grammar: charts encode information

Survey: "What was your reason for taking this postdoc?"

What information is encoded?

Before discussing what the chart means, we first have to agree on what the information is.

- · Select one color.
- What information does the color encode?
- Write your thoughts below.

Visual rhetoric: charts convey meaning

Survey: "What was your reason for taking this postdoc?"

What story do these data tell?

We agree on what the information *is*; now we consider what it *means*.

- *Meaning*. Describe a story (if any) this chart conveys to you.
- Write your thoughts below.

Visual grammar and rhetoric depend on the variables

- What is your question?
- What variables are measured?
- · How are the variables classified?
- What chart designs suit these variables?
- What stories do the charts convey?
- · How do the stories refine your questions?
- · What new variables are needed?
- Repeat

What can we say about these variables?

FILL IN THE BLANKS to begin summarizing the data structure.

1	PhD completion year	is a <i>categorical</i> variable.
2		is a <i>categorical</i> variable
3		is the <i>quantitative</i> variable
4		is the <i>independent</i> variable

Note that discrete time units are not 'continuous', so the time units here are an ordered, categorical (not quantitative) variable.

Time series? Use a line chart.

Un-clutter the display using one panel per reason.

- Meaning. Describe a story (if any) this chart conveys to you.
- Write your thoughts below.

An unstated assumption underlies the visual muddle

- Emphasizing the trivial
- A distributed quantity is displayed in a box-and-whisker plot.

Distributions? Use a box-and-whisker plot.

- *Meaning*. Describe a story (if any) this chart conveys to you.
- Write your thoughts below.

Reflect on perception, reasoning, and credibility

Select any prompt. Compare the stacked bar design to the box-andwhisker chart. Outline your response:

• Compare designs: Quantitative data are *perceived* accurately.

• Compare designs: Reasoning about the data is supported effectively.

• Compare designs: An argument is given *credible* visual support.

§ Advice from experts

Match the expert to the advice.

FILL IN THE BLANKS with letters A–D.

Expert	Letter	Emphasizes the importance of
A. Alberto Cairo		message
D. Inom Iva Dovement		i-l-l
B. Jean-luc Doumont		variables
C. Stephanie Evergreen		revealing the complex
D. Edward Tufte		knowing your main point
		not lying to yourself
		not lying to yoursen

Ideas to consider

- Characterize the data structure and content
- Explore a story's context, causality, and complexity
- Align visual and verbal logic by revising iteratively
- Edit to suit the rhetorical goals for each audience
- Control every pixel—avoid thoughtless conformity
- Question are you seeing only what you want to believe?

References

- Cairo, Alberto. 2019. How Charts Lie. New York: W.W. Norton.
- Doumont, Jean-luc. 2009. Trees, Maps, and Theorems. Belgium: Principiae.
- Evergreen, Stephanie D. H. 2017. Effective Data Visualization. Thousand Oaks, CA: Sage.
- Main, Joyce B., Yanbing Wang, and Li Tan. 2021. "The career outlook of engineering PhDs." Journal of Engineering Education 110 (4): 977-1002. https://doi.org/10.1002/jee.20416.
- Robbins, Naomi. 2013. Creating More Effective Graphs. Wayne, NJ: Chart House.
- Tufte, Edward. 1983. The Visual Display of Quantitative Information. Cheshire, CT: Graphics Press.
- World Bank. 2022-01. "Population total for United States." Federal Reserve Bank of St. Louis. https://fred.stlouisfed.org/ series/POPTOTUSA647NWDB.