Creating more effective charts

2023 MIDFIELD Institute

Perception, reasoning, and credibility

§ Effective alternatives to pie charts

Judging pie slices is a low-accuracy task

Pakistan

Creating More Effective Graphs by Naomi Robbins (2013) inspired the session title and Chapter 2, "Limitations of some common graphs," inspired our exercises.
Richard Layton resides online at

- https://www.graphdoctor.com
- https://github.com/graphdr
- Visually estimate each country's percentage
- Fill-in the blanks in the table
- Total should be 100%

Country
Percentage
China
India
United States
Indonesia
Pakistan Data source: World Bank (2022)

Judging values along a common axis is a high-accuracy task

- The new chart displays the same data
- Visually estimate the percentages using the new chart
- Fill-in the blanks in the table

The data from the pie chart is shown below as dots along a common scale.

Country Percentage

China
India
United States
Indonesia
Pakistan

3D effects distort our judgment even further

Again, a common scale improves our visual judgments

- The new chart displays the same data
- Visually estimate the percentages using the new chart

The data from the pie chart is shown below as dots along a common scale.

- Fill-in the blanks in the table

§ Effective alternatives to bar charts
3D effects always distort our judgment
- Visually estimate each country's population in millions
- Fill-in the blanks in the table

Same data—without 3D effects—along a common scale

- The new chart displays the same data
- Visually estimate the percentages using the new chart
- Fill-in the blanks in the table

The data from the ${ }_{3} \mathrm{D}$ bar chart is shown below as dots along a common scale.

With a zero baseline and no $3 D$ effects, bars are $O K$

- Zero baseline avoids deception
- Ordered by data values
- Only the endpoint encodes information

Consider dot charts for

- Visually comparing quantities
- Replacing most pie and bar charts

Ordered by magnitude:

Omitting the fill color:

Notes

Produces a dot chart:

§ Aligning the design to the story

Visual grammar: charts encode information
Survey: "What was your reason for taking this postdoc?"

What information is encoded?
Before discussing what the chart means, we first have to agree on what the information is.

- Select one color.
- What information does the color encode?
- Write your thoughts below.

Visual rhetoric: charts convey meaning
Survey: "What was your reason for taking this postdoc?"

What story do these data tell?
We agree on what the information is; now we consider what it means.

- Meaning. Describe a story (if any) this chart conveys to you.
- Write your thoughts below.

Visual grammar and rhetoric depend on the variables

- What is your question?
- What variables are measured?
- How are the variables classified?
- What chart designs suit these variables?
- What stories do the charts convey?
- How do the stories refine your questions?
- What new variables are needed?
- Repeat

What can we say about these variables?

Fill in the blanks to begin summarizing the data structure.

1. \qquad PhD completion year \qquad is a categorical variable.
2. \qquad is a categorical variable
3. \qquad is the quantitative variable
4. \qquad is the independent variable

Note that discrete time units are not 'continuous', so the time units here are an ordered, categorical (not quantitative) variable.

Time series? Use a line chart.
Un-clutter the display using one panel per reason.

- Meaning. Describe a story (if any) this chart conveys to you.
- Write your thoughts below.

An unstated assumption underlies the visual muddle

- Emphasizing the trivial
- A distributed quantity is displayed in a box-and-whisker plot.

Distributions? Use a box-and-whisker plot.

- Meaning. Describe a story (if any) this chart conveys to you.
- Write your thoughts below.

Reflect on perception, reasoning, and credibility

Select any prompt. Compare the stacked bar design to the box-andwhisker chart. Outline your response:

- Compare designs: Quantitative data are perceived accurately.
- Compare designs: Reasoning about the data is supported effectively.
- Compare designs: An argument is given credible visual support.

§ Advice from experts

Match the expert to the advice.

Fill in the blanks with letters A-D.
Expert Letter Emphasizes the importance of
A. Alberto Cairo message
B. Jean-luc Doumont ___ variables
C. Stephanie Evergreen ___ revealing the complex
D. Edward Tufte ___ knowing your main point
___ not lying to yourself

Ideas to consider

- Characterize the data structure and content
- Explore a story's context, causality, and complexity
- Align visual and verbal logic by revising iteratively
- Edit to suit the rhetorical goals for each audience
- Control every pixel—avoid thoughtless conformity
- Question are you seeing only what you want to believe?

References

Cairo, Alberto. 2019. How Charts Lie. New York: W.W. Norton.
Doumont, Jean-luc. 2009. Trees, Maps, and Theorems. Belgium: Principiae.
Evergreen, Stephanie D. H. 2017. Effective Data Visualization. Thousand Oaks, CA: Sage.
Main, Joyce B., Yanbing Wang, and Li Tan. 2021. "The career outlook of engineering PhDs." Journal of Engineering Education 110 (4): 977-1002. https://doi.org/10.1002/jee. 20416.
Robbins, Naomi. 2013. Creating More Effective Graphs. Wayne, NJ: Chart House.
Tufte, Edward. 1983. The Visual Display of Quantitative Information. Cheshire, CT: Graphics Press.
World Bank. 2022-01. "Population total for United States." Federal Reserve Bank of St. Louis. https://fred.stlouisfed.org/ series/POPTOTUSA647NWDB.

