Expanding your graphical repertoire 2023 MIDFIELD Institute

Richard Layton resides online at

- https://www.graphdoctor.com
- https://github.com/graphdr

Variables, design, message

Comparing data

Revealing correlations

Showing evolution

Displaying distributions

Trees, Maps, and Theorems by Jean-luc Doumont (2009) inspired the four main topics.

§ Comparing data

[4] Data

Square brackets [i] give the slide number.

Representation at graduation in 3 engineering programs, 19 US institutions, 1987-2018

	origin	sex Electrical	Engr	Computer	Engr
	<char>	<char>	<int>	<int>	Science
1:	International	Female	1865	140	<int>
2:	International	Male	8530	993	365
3:	Domestic	Female	23426	702	1442
4:	Domestic	Male	90150	7481	2923

[5] Dot chart

[6] Add a second category

[7] Exchange mapping of categorical variables

[8] Logarithmic scale for orders of magnitude differences

[9] One program per facet

[10] Add a third category

[11] Combine categories

[12] Discussion: Comparing data

What points seem most important to you so far?

§ Revealing correlations

[14] Data
Engineering students at 14 institutions persisting to year 4 and graduating by year 6, 1987-2019

```
institution sex y4 y6
    <char> <char> <int> <int>
1: A Female 4953 4525
        A Male 17897 16312
        B Female 2834 3316
26: N Male 1338 838
27: P Female 457 283
28: P Male 827 447
```

[15] Scatterplots are designed to reveal correlation

[16] Add a category

[17] One facet per sex

[18] One facet per institution

[19] Change the quantitative variable
Engineering students at 14 institutions persisting to year 4 and graduating by year 6, 1987-2019

[20] Discussion: Revealing correlations

- We saw a correlation.
- We changed the emphasis.
- Which chart tells a more compelling story?

§ Showing evolution

[22] Data

University of California: funding and percent White enrollment,
1999-2017

[23] Two time series

[24] Indexed time series

[25] Parallel lines indicate possible correlation

[26] Connected scatterplot

[27] Data

Extent of polar ice (millions sq km) 1979-2021

hemis	month	year	extent
<char>	<fctr>	<int>	<num>
Arctic	September	1979	7.051
Arctic September	1980	7.667	
Arctic September	1981	7.138	

1030: Antarctic August 201917.478
1031: Antarctic August 202017.758
1032: Antarctic August 202118.131
[28] Cyclic time series
Extent of polar ice for a given month, 1979-2021
$10^{6} \mathrm{~km}^{2} 20$

[29] Add a category
Extent of polar ice for a given month, 1979-2021

[30] Discussion: Showing evolution

- Which time series chart design might be used in your own work?
- Explain.

§ Displaying distributions

[32] Data
World speed skiing (km/hr) competitions 1953-1995

$$
\begin{array}{rrrr}
\text { Event } & \text { Year } & \text { Sex } & \text { Speed } \\
\text { <fctr> } & \text { <int> } & \text { <fctr> } & \text { <num> }
\end{array}
$$

: Speed Downhill 1952 Male 167.85
Speed Downhill 1953 Male 168.86
Speed Downhill 1961 Male 165.42
Speed Downhill 1962 Male 172.85

88:	Speed One	1990	Female	199.35
89:	Speed One	1991	Male 207.59	
90:	Speed One	1993	Male	208.33
91:	Speed One	1993	Male	170.30

[33] Strip chart

[34] Add a category

[35] Add a second category

[36] Data

MIDFIELD graduates ($\mathrm{N}=27 \mathrm{ok}$), enrolled in Engineering, excluding 1oth and goth quantiles

| path | sex years_to_grad |
| ---: | ---: | ---: |
| <char> | |

[37] Box and whisker chart
Graduates of 4-year US universities ($\mathrm{N}=269,057$)

[38] Add a category

[39] Combine a second category

[40] Discussion: Displaying distributions

What MIDFIELD distributions would you like to see:

- what quantitative variable?
- what categorical variables?

§ Closing discussion

[42] Variables, design, message

- For you, what was the muddiest point in the session?
- Is there a graph design you would have liked to have seen today?
- Is there a class of variables you would have liked to have seen today?

References

Doumont, Jean-luc. 2009. Trees, Maps, and Theorems. Belgium: Principiae.
Fetterer, F., K. Knowles, W. N. Meier, M. Savoie, and A. K. Windnagel. 2017. "Sea ice index, version 3, Sea ice extent and area organized by year." https://doi.org/https://doi.org/10.7265/ N5K072F8.
Newfield, Christopher. 2021. "Budget justice: Addressing the structural racism of higher education funding." Academe 107 (2): 57-64. https://www. aaup.org/article/budget-justice\#.Ypes1ajMJag.
Unwin, Antony. 2015. GDAdata: Datasets for the Book Graphical Data Analysis with r. https://CRAN.R-project.org/package=GDAdata.

